Inferential Problems in Bayesian Logistic Regression Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Bayesian computation of logistic regression models

The Extended Kalman Filter (EKF) algorithm for identification of a state space model is shown to be a sensible tool in estimating a Logistic Regression Model sequentially. A Gaussian probability density over the parameters of the Logistic model is propagated on a sample by sample basis. Two other approaches, the Laplace Approximation and the Variational Approximation are compared with the state...

متن کامل

Bayesian multivariate logistic regression.

Bayesian analyses of multivariate binary or categorical outcomes typically rely on probit or mixed effects logistic regression models that do not have a marginal logistic structure for the individual outcomes. In addition, difficulties arise when simple noninformative priors are chosen for the covariance parameters. Motivated by these problems, we propose a new type of multivariate logistic dis...

متن کامل

Presentation of new ensemble method of Bayesian and logistic regression models in landslide susceptibility assessment in the Khalkhal Township

The aim of current research is to assess of landslide susceptibility in the Khalkhal Township, southern Ardabil using an ensemble and new method namely Bayesian and logistic regression (BT-LR) models. At first, landslide inventory map was prepared and then effective factors on landslide occurrence were identified. These factors are slope degree, plan curvature, slope aspect, elevation, landuse,...

متن کامل

Inferential models for linear regression

Linear regression is arguably one of the most widely used statistical methods. However, important problems, especially variable selection, remain a challenge for classical modes of inference. This paper develops a recently proposed framework of inferential models (IMs) in the linear regression context. In general, the IM framework is able to produce meaningful probabilistic summaries of the sta...

متن کامل

Bayesian model selection for logistic regression models with random intercept

Data, collected to model risk of an interesting event, often have a multilevel structure as patients are clustered within larger units, e.g. clinical centers. Risk of the event is usually modeled using a logistic regression model, with a random intercept to control for heterogeneity among clusters. Model specification requires to decide which regressors have a non-negligible effect, and hence, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Korean Journal of Applied Statistics

سال: 2011

ISSN: 1225-066X

DOI: 10.5351/kjas.2011.24.6.1149